Clustering#
Clustering seeks to group data into clusters based on their properties and then allow us to predict which cluster a new member belongs.
We’ll use a dataset generator that is part of scikit-learn called make_moons
. This generates data that falls into 2 different sets with a shape that looks like half-moons.
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
def generate_data():
xvec, val = datasets.make_moons(200, noise=0.2)
# encode the output to be 2 elements
x = []
v = []
for xv, vv in zip(xvec, val):
x.append(np.array(xv))
v.append(vv)
return np.array(x), np.array(v)
x, v = generate_data()
Let’s look at a point and it’s value
print(f"x = {x[0]}, value = {v[0]}")
x = [-0.4074968 0.45431147], value = 1
Now let’s plot the data
def plot_data(x, v):
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]
fig, ax = plt.subplots()
ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
ax.set_aspect("equal")
return fig
fig = plot_data(x, v)

We want to partition this domain into 2 regions, such that when we come in with a new point, we know which group it belongs to.
First we setup and train our network
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from tensorflow.keras.optimizers import RMSprop
2025-04-20 21:56:53.770806: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-04-20 21:56:53.774153: I external/local_xla/xla/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.
2025-04-20 21:56:53.782957: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:467] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
E0000 00:00:1745186213.797305 3397 cuda_dnn.cc:8579] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
E0000 00:00:1745186213.801627 3397 cuda_blas.cc:1407] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
W0000 00:00:1745186213.813931 3397 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1745186213.813948 3397 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1745186213.813950 3397 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
W0000 00:00:1745186213.813952 3397 computation_placer.cc:177] computation placer already registered. Please check linkage and avoid linking the same target more than once.
2025-04-20 21:56:53.818909: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
model = Sequential()
model.add(Dense(50, input_dim=2, activation="relu"))
model.add(Dense(20, activation="relu"))
model.add(Dense(1, activation="sigmoid"))
/opt/hostedtoolcache/Python/3.11.12/x64/lib/python3.11/site-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
super().__init__(activity_regularizer=activity_regularizer, **kwargs)
2025-04-20 21:56:55.698840: E external/local_xla/xla/stream_executor/cuda/cuda_platform.cc:51] failed call to cuInit: INTERNAL: CUDA error: Failed call to cuInit: UNKNOWN ERROR (303)
rms = RMSprop()
model.compile(loss='binary_crossentropy',
optimizer=rms, metrics=['accuracy'])
from IPython.display import SVG
from keras.utils import plot_model
plot_model(model, show_shapes=True, dpi=100)

We seem to need a lot of epochs here to get a good result
epochs = 100
results = model.fit(x, v, batch_size=50, epochs=epochs)
Epoch 1/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 1s 630ms/step - accuracy: 0.3400 - loss: 0.7226
4/4 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4627 - loss: 0.7059
Epoch 2/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.7400 - loss: 0.6624
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.7560 - loss: 0.6571
Epoch 3/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.6210
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8573 - loss: 0.6230
Epoch 4/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.8200 - loss: 0.6129
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8380 - loss: 0.6026
Epoch 5/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9400 - loss: 0.5692
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8840 - loss: 0.5739
Epoch 6/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.5630
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8647 - loss: 0.5546
Epoch 7/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8000 - loss: 0.5562
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8407 - loss: 0.5365
Epoch 8/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.5221
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8527 - loss: 0.5182
Epoch 9/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.7600 - loss: 0.5375
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8247 - loss: 0.5068
Epoch 10/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9600 - loss: 0.4503
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8887 - loss: 0.4651
Epoch 11/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.4645
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8420 - loss: 0.4696
Epoch 12/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.4413
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8687 - loss: 0.4438
Epoch 13/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.4360
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8553 - loss: 0.4304
Epoch 14/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8000 - loss: 0.4466
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8287 - loss: 0.4350
Epoch 15/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.3861
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8533 - loss: 0.4086
Epoch 16/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.4108
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8567 - loss: 0.4011
Epoch 17/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.3485
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8587 - loss: 0.3857
Epoch 18/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.3795
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8633 - loss: 0.3749
Epoch 19/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8000 - loss: 0.4115
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8413 - loss: 0.3741
Epoch 20/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.3100
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8607 - loss: 0.3481
Epoch 21/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3951
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8467 - loss: 0.3729
Epoch 22/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8200 - loss: 0.4095
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8493 - loss: 0.3664
Epoch 23/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.7800 - loss: 0.4421
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8333 - loss: 0.3738
Epoch 24/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2908
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8700 - loss: 0.3109
Epoch 25/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.7200 - loss: 0.4961
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8193 - loss: 0.3787
Epoch 26/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.3474
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8567 - loss: 0.3297
Epoch 27/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 12ms/step - accuracy: 0.9000 - loss: 0.2642
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8707 - loss: 0.3073
Epoch 28/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3684
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8593 - loss: 0.3362
Epoch 29/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3448
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8600 - loss: 0.3242
Epoch 30/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2582
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8680 - loss: 0.2905
Epoch 31/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2781
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8767 - loss: 0.2924
Epoch 32/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8200 - loss: 0.3800
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8487 - loss: 0.3297
Epoch 33/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.3161
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8733 - loss: 0.2964
Epoch 34/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3274
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8533 - loss: 0.3189
Epoch 35/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.3093
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8680 - loss: 0.3059
Epoch 36/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2660
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8887 - loss: 0.2831
Epoch 37/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8200 - loss: 0.3452
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8467 - loss: 0.3211
Epoch 38/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8200 - loss: 0.3301
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8540 - loss: 0.3123
Epoch 39/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8000 - loss: 0.3289
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8473 - loss: 0.3016
Epoch 40/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.8800 - loss: 0.2595
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8693 - loss: 0.2839
Epoch 41/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9400 - loss: 0.2152
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8933 - loss: 0.2622
Epoch 42/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.3074
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8733 - loss: 0.3018
Epoch 43/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.2037
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8827 - loss: 0.2822
Epoch 44/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.7800 - loss: 0.4109
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8507 - loss: 0.3231
Epoch 45/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2973
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8887 - loss: 0.2910
Epoch 46/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2647
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8767 - loss: 0.2940
Epoch 47/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8000 - loss: 0.3720
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8527 - loss: 0.3111
Epoch 48/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3523
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8700 - loss: 0.2997
Epoch 49/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.3135
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8760 - loss: 0.2930
Epoch 50/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8000 - loss: 0.3925
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8560 - loss: 0.3159
Epoch 51/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3496
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8720 - loss: 0.2974
Epoch 52/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3174
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8713 - loss: 0.2805
Epoch 53/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2314
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8780 - loss: 0.2678
Epoch 54/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9400 - loss: 0.1890
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9027 - loss: 0.2461
Epoch 55/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8200 - loss: 0.3423
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8640 - loss: 0.2872
Epoch 56/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8000 - loss: 0.3982
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8607 - loss: 0.3067
Epoch 57/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2860
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8833 - loss: 0.2668
Epoch 58/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.3309
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8813 - loss: 0.2806
Epoch 59/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2348
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8787 - loss: 0.2695
Epoch 60/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.3041
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8713 - loss: 0.2716
Epoch 61/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2623
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8840 - loss: 0.2615
Epoch 62/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.9200 - loss: 0.1970
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8940 - loss: 0.2421
Epoch 63/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2486
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8840 - loss: 0.2682
Epoch 64/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.2542
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8907 - loss: 0.2617
Epoch 65/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2662
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8973 - loss: 0.2502
Epoch 66/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.9000 - loss: 0.2514
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8880 - loss: 0.2590
Epoch 67/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2778
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8833 - loss: 0.2601
Epoch 68/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2321
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8880 - loss: 0.2367
Epoch 69/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2030
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8880 - loss: 0.2378
Epoch 70/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2166
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8813 - loss: 0.2435
Epoch 71/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.3159
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8720 - loss: 0.2759
Epoch 72/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.1689
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8973 - loss: 0.2255
Epoch 73/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.1994
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8920 - loss: 0.2245
Epoch 74/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9400 - loss: 0.2027
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9080 - loss: 0.2230
Epoch 75/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8200 - loss: 0.3611
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8647 - loss: 0.2761
Epoch 76/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9400 - loss: 0.1608
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9007 - loss: 0.2192
Epoch 77/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.9200 - loss: 0.2143
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8973 - loss: 0.2300
Epoch 78/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.1962
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8900 - loss: 0.2308
Epoch 79/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.2033
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8847 - loss: 0.2376
Epoch 80/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 14ms/step - accuracy: 0.8600 - loss: 0.2770
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8733 - loss: 0.2520
Epoch 81/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2306
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8800 - loss: 0.2366
Epoch 82/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.3021
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8720 - loss: 0.2593
Epoch 83/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.2315
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8807 - loss: 0.2299
Epoch 84/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8200 - loss: 0.2864
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8740 - loss: 0.2439
Epoch 85/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.2382
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8773 - loss: 0.2300
Epoch 86/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2052
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9067 - loss: 0.2033
Epoch 87/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2090
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8880 - loss: 0.2217
Epoch 88/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.1603
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8800 - loss: 0.2262
Epoch 89/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2331
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8933 - loss: 0.2232
Epoch 90/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.1650
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9013 - loss: 0.2001
Epoch 91/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.1966
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8847 - loss: 0.2199
Epoch 92/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8400 - loss: 0.2286
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8773 - loss: 0.2146
Epoch 93/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2204
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8893 - loss: 0.2139
Epoch 94/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9200 - loss: 0.1826
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8933 - loss: 0.2090
Epoch 95/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2504
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8987 - loss: 0.2162
Epoch 96/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8600 - loss: 0.2478
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.8933 - loss: 0.2194
Epoch 97/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9400 - loss: 0.1683
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9047 - loss: 0.1946
Epoch 98/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.8800 - loss: 0.2502
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9047 - loss: 0.2175
Epoch 99/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9400 - loss: 0.2105
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9173 - loss: 0.2032
Epoch 100/100
1/4 ━━━━━━━━━━━━━━━━━━━━ 0s 13ms/step - accuracy: 0.9000 - loss: 0.2517
4/4 ━━━━━━━━━━━━━━━━━━━━ 0s 5ms/step - accuracy: 0.9080 - loss: 0.2205
score = model.evaluate(x, v, verbose=0)
print(f"score = {score[0]}")
print(f"accuracy = {score[1]}")
score = 0.19891922175884247
accuracy = 0.9200000166893005
Let’s look at a prediction. We need to feed in a single point as an array of shape (N, 2)
, where N
is the number of points
res = model.predict(np.array([[-2, 2]]))
res
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 32ms/step
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 42ms/step
array([[1.4592869e-05]], dtype=float32)
We see that we get a floating point number. We will need to convert this to 0 or 1 by rounding.
Let’s plot the partitioning
M = 128
N = 128
xmin = -1.75
xmax = 2.5
ymin = -1.25
ymax = 1.75
xpt = np.linspace(xmin, xmax, M)
ypt = np.linspace(ymin, ymax, N)
To make the prediction go faster, we want to feed in a vector of these points, of the form:
[[xpt[0], ypt[0]],
[xpt[1], ypt[1]],
...
]
We can see that this packs them into the vector
pairs = np.array(np.meshgrid(xpt, ypt)).T.reshape(-1, 2)
pairs[0]
array([-1.75, -1.25])
Now we do the prediction. We will get a vector out, which we reshape to match the original domain.
res = model.predict(pairs, verbose=0)
res.shape = (M, N)
Finally, round to 0 or 1
domain = np.where(res > 0.5, 1, 0)
and we can plot the data
fig, ax = plt.subplots()
ax.imshow(domain.T, origin="lower",
extent=[xmin, xmax, ymin, ymax], alpha=0.25)
xpt = [q[0] for q in x]
ypt = [q[1] for q in x]
ax.scatter(xpt, ypt, s=40, c=v, cmap="viridis")
<matplotlib.collections.PathCollection at 0x7fca0dbd6510>
